Transfer of functional microRNAs between glioblastoma and microvascular endothelial cells through gap junctions
نویسندگان
چکیده
Extensive invasion and angiogenesis are hallmark features of malignant glioblastomas. Here, we co-cultured U87 human glioblastoma cells and human microvascular endothelial cells (HMEC) to demonstrate the exchange of microRNAs that initially involve the formation of gap junction communications between the two cell types. The functional inhibition of gap junctions by carbenoxolone blocks the transfer of the anti-tumor miR-145-5p from HMEC to U87, and the transfer of the pro-invasive miR-5096 from U87 to HMEC. These two microRNAs exert opposite effects on angiogenesis in vitro. MiR-5096 was observed to promote HMEC tubulogenesis, initially by increasing Cx43 expression and the formation of heterocellular gap junctions, and secondarily through a gap-junction independent pathway. Our results highlight the importance of microRNA exchanges between tumor and endothelial cells that in part involves the formation of functional gap junctions between the two cell types.
منابع مشابه
The Microvascular Gap Junction Channel: A Route to Deliver MicroRNAs for Neurological Disease Treatment
Brain microvascular endothelial cells (BMECs) separate the peripheral blood from the brain. These cells, which are surrounded by basal lamina, pericytes and glial cells, are highly interconnected through tight and gap junctions. Their permeability properties restrict the transfer of potentially useful therapeutic agents. In such a hermetic system, the gap junctional exchange of small molecules ...
متن کاملGap junction-mediated transfer of miR-145-5p from microvascular endothelial cells to colon cancer cells inhibits angiogenesis
Gap junctional communication between cancer cells and blood capillary cells is crucial to tumor growth and invasion. Gap junctions may transfer microRNAs (miRs) among cells. Here, we explore the impact of such a transfer in co-culture assays, using the antitumor miR-145 as an example. The SW480 colon carcinoma cells form functional gap junction composed of connexin-43 (Cx43) with human microvas...
متن کاملGap junctions modulate glioma invasion by direct transfer of microRNA
The invasiveness of high-grade glioma is the primary reason for poor survival following treatment. Interaction between glioma cells and surrounding astrocytes are crucial to invasion. We investigated the role of gap junction mediated miRNA transfer in this context. By manipulating gap junctions with a gap junction inhibitor, siRNAs, and a dominant negative connexin mutant, we showed that functi...
متن کاملVascular Wall Cells
Gap junctions between vessel wall cells provide a pathway for the intercellular exchange of ions and small molecules. Pure cultures of microvascular and macrovascular endothelial and smooth muscle cells, vascular pericytes, and several nonvascular cell lines were tested for junctional communication by fluorescent dye transfer. All of the vascular wall cells were capable of dye transfer. Since g...
متن کاملGap junction messenger RNA expression by vascular wall cells.
Gap junctions between vessel wall cells provide a pathway for the intercellular exchange of ions and small molecules. Pure cultures of microvascular and macrovascular endothelial and smooth muscle cells, vascular pericytes, and several nonvascular cell lines were tested for junctional communication by fluorescent dye transfer. All of the vascular wall cells were capable of dye transfer. Since g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016